Absolute Croutonfinity is inspired by Croutonillion on the regular googology wiki. It has the same concept, but in Fictional Googology.
Rules [ ]
same as croutonfinity
(also EABA steps may be skipped and replaced with repeating the previous steps X times)
Definition [ ]
First, define Y as .|
Ω
{\displaystyle \Omega}
ZZZ... xX
Ω
{\displaystyle \Omega}
ZZZ... |. x[?] with [?] Zs
YxXY
Define a↺(b) by assuming a loop part after a, and looping b times. Y↺(Y)
Omniexpand and hyperexpand Y
Expand Y beyond all maximum of all true mega all before making it treol-inexapnsihle
Y with all properties in A.I.F.T.B.P.T.E.L
Do all step in croutonfinity before this Y times Y times with Y amounts of Y times
Apply all FG functions to Y and actual never ending amount of times
Repeat all steps in chonker saLLad Y times
Y can change Bubblebounds and can be used for kathextents bigger than absolute-extents in Bubblebounds, but however doesn't fall under kaththings. Repeat this step unstackable times
Y Cannot be affected by Kaths or seeds and is trajpotent+
Repeat all non-EABA steps on Y, Y times
D(Y)-[It] - Pass itasymptote
S(Y)[t] - Pass seedling
RCM(Y)[/] - Past any type of fallacies
Kath-Y > or = Crocodile
Traj-Y
CT(Y)
rm(Y,Y,Y,Y,Y…) with y ys
⨂... Y^Y^Y W(Y,Y)
T(Y)
TNY (Y)
Z
u
x
Z
u
x
Z
u
x
⋅
⋅
⋅
z
u
x
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
{\displaystyle Zux^{Zux^{Zux^{\cdot ^{\cdot ^{\cdot ^{zux^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}
ras(y)
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
{\displaystyle Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
)
(
y
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
y
)
(
y
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
(
R
a
s
R
a
s
R
a
s
⋅
⋅
⋅
R
a
s
y
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
(
y
)
)
{\displaystyle Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y)))}(y)}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(y)}(y)}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))(Ras^{Ras^{Ras^{\cdot ^{\cdot ^{\cdot ^{Ras^{y}(y)}(y)}(y)}(y)}(y)}(y)}(y))}
In the end, define Absolute Crouton as the final value of Y. Absolute Croutonfinity will then be ...(...)|Absolute CroutonxXAbsolute Crouton|...(...) with Absolute crouton .s