Nullology is the competition to create the smallest positive number
A ... of 1 | Nullology name: | This number is 1 divided by... | Standard Form |
---|---|---|---|
wholeth/oneth | Onenull / Onull | 1 / 10↑0 | 1 |
tenth | Tenull | 10 / 10↑1 | 0.1 |
hundtredth | Hunull | 100 / 10↑2 | 0.01 |
thousandth | Thousanull | 1000 / 10↑3 | 0.001 |
millionth | Millionull | 10↑6 | 0.0000001 |
billionth | billionull | 10↑9 | 0.0000000001 |
trillionth | trillionull | 10↑12 | 0.0000000000001 |
quadrillionth | quadrillionull | 10↑15 | 0.0000000000000001 |
quintillionth | quintillionull | 10↑18 | 0.0000000000000000001 |
sextillionth | sextillionull | 10↑21 | 0.0000000000000000000001 |
septillionth | septillionull | 10↑24 | 0.0000000000000000000000001 |
octillionth | octillionull | 10↑27 | 0.0000000000000000000000000001 |
nonillionth | nonillionull | 10↑30 | 0.0000000000000000000000000000001 |
decillionth | decillionull | 10↑33 | 0.0000000000000000000000000000000001 |
vigintillionth | vigintillionull | 10↑63 | 0.00000000000000000000000000000000000000000000000000000000000000001 |
trigintillionth | trigintillionull | 10↑93 | 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 |
googolth | googolull | 10↑100 | 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 |
quadragintillionth | quadragintillionull | 123↑10 | yeah no lol |
quinquagintillionth | quinquagintillionull | 10↑153 | |
sexagintillionth | sexagintillionull | 10↑183 | |
septuagintillionth | septuagintillionull | 10↑213 | |
octagintillionth | octagintillionull | 10↑243 | |
nonagintillion | nonagintillionull | 10↑273 | |
centillionth | centillionull | 10↑303 | |
milliatillionth | milliatillionull | 10↑3003 | |
Micrillionth | Micrillionull | 10↑3000003 | |
googolplexth | googolplexull | 10↑10↑100 | |
googolplexianth | googolplexianull | 10↑10↑10↑100 | |
unull | 10↑10↑10↑10↑100 | ||
duonull | 10↑↑100 | ||
trinull | 10↑↑↑100 | ||
quattorull | 10↑↑↑↑100 | ||
quinull | 10{5}100 | ||
sexull | 10{6}100 | ||
septull | 10{7}100 | ||
octonull | 10{8}100 | ||
nonull | 10{9}100 | ||
decinull | 10{10}100 | ||
Viginull | 10{20}100 | ||
Triginull | 10{30}100 | ||
quadraginull | 10{40}100 | ||
quindraginull | 10{50}100 | ||
sexanull | 10{60}100 | ||
septuanull | 10{70}100 | ||
octanull | 10{80}100 | ||
novemull | 10{90}1 | ||
cenull | 10{100}100 | ||
Nulldian | 100{100}100 | ||
unulldian | 1000{100}1000 | ||
duonulldian | 1000{200}1000 | ||
trinulldian | 1000{300}1000 | ||
quattornulldian | 1000{400}1000 | ||
quinulldian | 1000{500}1000 | ||
sexnulldian | 1000{600}1000 | ||
septnulldian | 1000{700}1000 | ||
octonulldian | 1000{800}1000 | ||
nonulldian | 1000{900}1000 | ||
decinulldian | 1000{1000}1000 | ||
viginulldian | 1000{2000}1000 | ||
trinulldian | 1000{3000}1000 | ||
quadraginulldian | 1000{4000}1000 | ||
quindranulldian | 1000{5000}1000 | ||
sexanulldian | 1000{6000}1000 | ||
septuanulldian | 1000{7000}1000 | ||
octanulldian | 1000{8000}1000 | ||
Novemnulldian | 1000{9000}1000 | ||
cenulldian | 1000{10000}1000 | ||
nulldianul | 10↑4{10↑4}10↑4 | ||
unulldianul | 10↑4{1.5x10↑4}10↑4 | ||
duonulldianul | 10↑4{2x10↑4}10↑4 | ||
trinulldianul | 10↑4{3x10↑4}10↑4 | ||
quattornulldianul | 10↑4{4x10↑4}10↑4 | ||
quinulldianul | 10↑4{5x10↑4}10↑4 | ||
sexnulldianul | 10↑4{6x10↑4}10↑4 | ||
septnulldianul | 10↑4{7x10↑4}10↑4 | ||
octonulldianul | 10↑4{8x10↑4}10↑4 | ||
nonulldianul | 10↑4{9x10↑4}10↑4 | ||
decinulldianul | 10↑4{10x10↑4}10↑4 | ||
viginulldianul | 10↑4{20x10↑4}10↑4 | ||
triginulldianul | 10↑4{30x10↑4}10↑4 | ||
quadranulldianul | 10↑4{40x10↑4}10↑4 | ||
qiundranulldianul | 10↑4{50x10↑4}10↑4 | ||
sexanulldianul | 10↑4{60x10↑4}10↑4 | ||
septuanulldianul | 10↑4{70x10↑4}10↑4 | ||
octanulldianul | 10↑4{80x10↑4}10↑4 | ||
novenulldianul | 10↑4{90x10↑4}10↑4 | ||
cenulldianul | 10↑4{100x10↑4}10↑4 | ||
smolull | Googol{{1}}googolplex | ||
zullum | Googolplex{{{4}}}googolplexian | -_==0==_- | |
Absolute Zullum | googolplexian{{{4}}}Googoltriplex | _-0=00 | |
Zulludum | Googoltriplex{{{4}}}Googolquadriplex | _0_/0 | |
Absolute Zulludum | Googolquadriplex{{{4}}}Googolquinplex | =0-_= | |
Zwullum | TREE(3){{{4}}}TREE(5) | =0'_'- | |
Absolute Zwullum[] |
TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE | ====0==0=_- | |
Zwulludum | TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE | 0/0'0=0_0-00 0 | |
Absolute Zwulludum | TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE | -=_0 | |
Zallam | TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE | 0=_ | |
Absolute Zallam | TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE | _-0 | |
Zwallam | TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE | 0_/- | |
Absolute Zwallam | TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE= TREE something | /__-0 | |
Øver | TREE something{{{4}}}TREE something | +_-//0 | |
xzullum | TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something | _-/=|0+ | |
absolute xzullum | TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something | /-_0=+0_-/ | |
Zxwullum | TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something | |=_=/__-0 | |
Absolute Zxwullum | TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something | -/0|0\- | |
Gvullum | TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something=What a TREE | \0''-_=|+ | |
Zwero | What a TREE{{{4}}}What a TREE | |||=-\'0 | |
Absolute Zwero | What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE | \0=+_/ | |
NulØ | What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE | 0-_=|+" | |
Absolute NulØ | What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE=¤ee | =0''_+ | |
Krinavedox | The factorial of ¤ee | 0=+-_*' | |
Oblivionth | Now, that's small | Oblivion | |
BIG FOOTh | Small foot | BIG FOOT | |
Rayo's numberth | Small's small | Rayo's number | |
Truly small | ??? | {0'='0} | |
Super less | ??? | ><0>< | |
Smallest of the smallest | ??? | __-0-=||\/ | |
Void's egde | ??? | .-_ | |
Beyond Void | ??? | ._ | |
Farawell from Void | ??? | .- | |
Axwull | ??? | X_-. | |
Waxwull | ??? | 0-X_-. | |
Awaxwull | ??? | =_0-X_-.+ | |
Infinitesimal | Hyper Tiny | 2, infinity times. | 0_\∞/=-0 |
Non existing | ???. But Non existing<0 and: any other number>Non existing | ||
All numbers smaller than Hyper Tiny, but larger than zero, devided by eachother from smallest to largest. | Uno | ??? | [{0}1] |
Uno Devided by Hyper Tiny | Duo | ??? | [{0}2] |
Zero | Zeero | 0 | 0 |