Fictional Googology Wiki
Advertisement

Nullology is the competition to create the smallest positive number


The List of Numbers/Quantum Edition
A ... of 1 Nullology name: This number is 1 divided by... Standard Form
wholeth/oneth Onenull / Onull 1 / 10↑0 1
tenth Tenull 10 / 10↑1 0.1
hundtredth Hunull 100 / 10↑2 0.01
thousandth Thousanull 1000 / 10↑3 0.001
millionth Millionull 10↑6 0.0000001
billionth billionull 10↑9 0.0000000001
trillionth trillionull 10↑12 0.0000000000001
quadrillionth quadrillionull 10↑15 0.0000000000000001
quintillionth quintillionull 10↑18 0.0000000000000000001
sextillionth sextillionull 10↑21 0.0000000000000000000001
septillionth septillionull 10↑24 0.0000000000000000000000001
octillionth octillionull 10↑27 0.0000000000000000000000000001
nonillionth nonillionull 10↑30 0.0000000000000000000000000000001
decillionth decillionull 10↑33 0.0000000000000000000000000000000001
vigintillionth vigintillionull 10↑63 0.00000000000000000000000000000000000000000000000000000000000000001
trigintillionth trigintillionull 10↑93 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
googolth googolull 10↑100 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
quadragintillionth quadragintillionull 123↑10 yeah no lol
quinquagintillionth quinquagintillionull 10↑153
sexagintillionth sexagintillionull 10↑183
septuagintillionth septuagintillionull 10↑213
octagintillionth octagintillionull 10↑243
nonagintillion nonagintillionull 10↑273
centillionth centillionull 10↑303
milliatillionth milliatillionull 10↑3003
Micrillionth Micrillionull 10↑3000003
googolplexth googolplexull 10↑10↑100
googolplexianth googolplexianull 10↑10↑10↑100
unull 10↑10↑10↑10↑100
duonull 10↑↑100
trinull 10↑↑↑100
quattorull 10↑↑↑↑100
quinull 10{5}100
sexull 10{6}100
septull 10{7}100
octonull 10{8}100
nonull 10{9}100
decinull 10{10}100
Viginull 10{20}100
Triginull 10{30}100
quadraginull 10{40}100
quindraginull 10{50}100
sexanull 10{60}100
septuanull 10{70}100
octanull 10{80}100
novemull 10{90}1
cenull 10{100}100
Nulldian 100{100}100
unulldian 1000{100}1000
duonulldian 1000{200}1000
trinulldian 1000{300}1000
quattornulldian 1000{400}1000
quinulldian 1000{500}1000
sexnulldian 1000{600}1000
septnulldian 1000{700}1000
octonulldian 1000{800}1000
nonulldian 1000{900}1000
decinulldian 1000{1000}1000
viginulldian 1000{2000}1000
trinulldian 1000{3000}1000
quadraginulldian 1000{4000}1000
quindranulldian 1000{5000}1000
sexanulldian 1000{6000}1000
septuanulldian 1000{7000}1000
octanulldian 1000{8000}1000
Novemnulldian 1000{9000}1000
cenulldian 1000{10000}1000
nulldianul 10↑4{10↑4}10↑4
unulldianul 10↑4{1.5x10↑4}10↑4
duonulldianul 10↑4{2x10↑4}10↑4
trinulldianul 10↑4{3x10↑4}10↑4
quattornulldianul 10↑4{4x10↑4}10↑4
quinulldianul 10↑4{5x10↑4}10↑4
sexnulldianul 10↑4{6x10↑4}10↑4
septnulldianul 10↑4{7x10↑4}10↑4
octonulldianul 10↑4{8x10↑4}10↑4
nonulldianul 10↑4{9x10↑4}10↑4
decinulldianul 10↑4{10x10↑4}10↑4
viginulldianul 10↑4{20x10↑4}10↑4
triginulldianul 10↑4{30x10↑4}10↑4
quadranulldianul 10↑4{40x10↑4}10↑4
qiundranulldianul 10↑4{50x10↑4}10↑4
sexanulldianul 10↑4{60x10↑4}10↑4
septuanulldianul 10↑4{70x10↑4}10↑4
octanulldianul 10↑4{80x10↑4}10↑4
novenulldianul 10↑4{90x10↑4}10↑4
cenulldianul 10↑4{100x10↑4}10↑4
smolull Googol{{1}}googolplex
zullum Googolplex{{{4}}}googolplexian -_==0==_-
Absolute Zullum googolplexian{{{4}}}Googoltriplex _-0=00
Zulludum Googoltriplex{{{4}}}Googolquadriplex _0_/0
Absolute Zulludum Googolquadriplex{{{4}}}Googolquinplex =0-_=
Zwullum TREE(3){{{4}}}TREE(5) =0'_'-
Absolute Zwullum[]
TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE ====0==0=_-
Zwulludum TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE 0/0'0=0_0-00 0
Absolute Zwulludum TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE -=_0
Zallam TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE 0=_
Absolute Zallam TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE _-0
Zwallam TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE 0_/-
Absolute Zwallam TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE{{{4}}}TREE(3){{{4}}}TREE(5){{{4}}}TREE(3){{{4}}}TREE= TREE something /__-0
Øver TREE something{{{4}}}TREE something +_-//0
xzullum TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something _-/=|0+
absolute xzullum TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something /-_0=+0_-/
Zxwullum TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something |=_=/__-0
Absolute Zxwullum TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something -/0|0\-
Gvullum TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something{{{4}}}TREE something=What a TREE \0''-_=|+
Zwero What a TREE{{{4}}}What a TREE |||=-\'0
Absolute Zwero What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE \0=+_/
NulØ What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE 0-_=|+"
Absolute NulØ What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE{{{4}}}What a TREE=¤ee =0''_+
Krinavedox The factorial of ¤ee 0=+-_*'
Oblivionth Now, that's small Oblivion
BIG FOOTh Small foot BIG FOOT
Rayo's numberth Small's small Rayo's number
Truly small ??? {0'='0}
Super less ??? ><0><
Smallest of the smallest ??? __-0-=||\/
Void's egde ??? .-_
Beyond Void ??? ._
Farawell from Void ??? .-
Axwull ??? X_-.
Waxwull ??? 0-X_-.
Awaxwull ??? =_0-X_-.+
Infinitesimal Hyper Tiny 2, infinity times. 0_\∞/=-0
Non existing ???. But Non existing<0 and: any other number>Non existing
All numbers smaller than Hyper Tiny, but larger than zero, devided by eachother from smallest to largest. Uno ??? [{0}1]
Uno Devided by Hyper Tiny Duo ??? [{0}2]
Zero Zeero 0 0
Advertisement